ON THE FORCE ACTING ON A CYLINDER IN A STEADY STREAM OF VISCOUS FLUID AT LOW REYNOLDS NUMBER*

M.M. VASIL'EV

The plane flow over a circular cylinder of a steady stream of viscous fluid at low Reynolds numbers is considered. A rigorous derivation of Lamb's formula for drag is given with an estimate of the residual term.

1. The flow over a cylindrical body of a plane-parallel steady stream of viscous incompressible fluid is defined by the system of Navier-Stokes equations with boundary conditions

$$
\begin{gather*}
\Delta v-2 \lambda\left(u_{\infty} \cdot \nabla\right) v-2 \lambda \operatorname{grad} p=2 \lambda \sum_{k=1}^{2} v_{k} \frac{\partial v}{\partial x_{k}}, \quad \operatorname{div} v=0 \tag{1.1}\\
\left.v\right|_{c}=-u_{\infty}, \quad \lim _{|x| \rightarrow a} v(x)=0 \tag{1,2}
\end{gather*}
$$

where $v=u-u_{\infty}, u$ and p are the dimensionless velocity vector and pressure, respectively, 2λ is the Reynolds number, u_{∞} is the vector of the oncoming stream velocity, $x=\left(x_{1}, x_{2}\right)$, and C is the contour of the transverse cross section B of the body in the stream. We assume the coordinate origin to be inside contour C with the coordinate axes directed so that $u_{\infty}=(1,0)$.

Linear Oseen equations

$$
\begin{equation*}
\Delta v-2 \lambda\left(u_{\infty} \cdot \nabla\right) v-2 \lambda \operatorname{grad} p=f(x), \quad \operatorname{div} v=0 \tag{1.3}
\end{equation*}
$$

are used as an auxilliary system in the investigation of the boundary value problem (1.1),(1.2), whose solution can be represented in the form of series /1/

$$
\begin{equation*}
v(x, \lambda)=v^{(0)}(x, \lambda)+\sum_{k=1}^{\infty} v^{(k)}(x, \lambda)(2 \lambda)^{k} \tag{1.4}
\end{equation*}
$$

that is convergent for reasonably low Reynolds numbers. In formula (1.4) $v^{(0)}(x, \lambda)$ represents the solution of the homogeneous system of Oseen equations (with $f(x)=0$) with boundary conditions (1.2), and $i^{(k)}(x, \lambda)(l \geqslant 1)$ is the solution of the inhomogeneous system (1.3) for

$$
f(x)=\sum_{k=1}^{2} \sum_{j=0}^{l-1} v_{k}^{(j)} \frac{\partial \nu^{(l-1-j)}}{\partial x_{k}}
$$

with null boundary conditions $\left.\quad v\right|_{c}=0, \lim v=0 \quad(|x| \rightarrow \infty)$.
2. The formula for drag of a body in a steady three-dimensional stream of a viscous incompressible fluid had been obtained earlier (**). Using similar reasoning it is possible to obtain that formula also for a two-dimensional plane flow

$$
\begin{equation*}
F_{1}=F_{1}^{(0)}-\int_{D} w_{j}^{(0)} v_{k} \frac{\partial v_{j}}{\partial y_{k}} d y \tag{2.1}
\end{equation*}
$$

*Prikl.Matem.Mekhan.,45,pp.845-848,1981

**) K.I. Babenko, The theory of perturbations of steady flows of viscous incompressible fluid at low Reynoids numbers. Preprint No. 79, Inst. Prikl.Matem., Akad. Nauk SSSR, 1975.
where $F_{1}{ }^{(0)}$ is the drag in the Oseen approximation when $D=R^{2} \backslash B, w^{(0)}$ is the velocity of perturbations in that approximation when $u_{\infty}=(-1,0)$. It is assumed that summation from 1 to 2 is carried out over twice recurrent subscripts.

Formulas (2.1) are obtained using the integral representation of solution and some of its estimates which appear in $/ 2 /$ and, also, the readily verified equality

$$
\int_{C_{R}} H_{i j}(x-y) n_{1}(x) d l_{x}=-\frac{\delta_{i j}}{i \pi}+o(1)
$$

where C_{R} is a circle of radius $R(R \rightarrow \infty)$ and $H_{i j}$ is the fundamental solution of the Oseen equation

$$
\begin{aligned}
& H_{11}=\frac{Q+T_{1}}{4 \pi}, \quad H_{22}=\frac{Q-T_{1}}{4 \pi}, \quad H_{12}=H_{21}=\frac{T_{2}}{4 \pi} \\
& T_{k}=\frac{y_{k}-x_{k}}{|x-y|}\left[\frac{1}{\lambda|x-y|}-K_{1}(\lambda|x-y|) e^{\lambda\left(x_{1}-y_{1}\right)}\right] \quad(k=1,2) \\
& Q=K_{0}(\lambda|x-y|) e^{\lambda\left(x_{1}-y_{1}\right)}
\end{aligned}
$$

where K_{0}, K_{1} are MacDonald functions.
3. Formula (2.1) enables us to obtain an asymptotic formula for the determination of drag of a circular cylinder in the case of low Reynolds number. The drag $F_{1}{ }^{(0)}$ of a cylinder appearing in that formula in the Oseen approximation was investigated in /3,4/ and other works. Solution of the problem of flow over a circular cylinder was obtained in $/ 3 /$ in polar coordinates r, θ in the form

$$
\begin{gather*}
v_{r}^{(0)}=\sum_{n=0}^{\infty} A_{n} \frac{\cos n \theta}{r^{n+1}}-\frac{1}{4} \sum_{m=0}^{\infty} R_{m}\left[\left.-\frac{2}{\xi} \right\rvert\, \sum_{n=1}^{\infty} \Phi_{m n}(\xi) \cos n \theta\right] \tag{3.1}\\
v_{\theta}^{(0)}=-\sum_{n=1}^{n} A_{n} \frac{\sin n \theta}{r^{n+1}}-\frac{1}{4} \sum_{m=0}^{\infty} \sum_{n=1}^{\sim} B_{m} \Psi_{m n}(\xi) \sin n \theta \tag{3.2}\\
\Phi_{m n}=\left(K_{m+1}+K_{m-1}\right)\left(I_{m-n}+I_{m: n}\right)+K_{m}\left(I_{m-n-1}+I_{m-n+1}+I_{m+n-1}+I_{m+n+1}\right) \\
\Psi_{m n}=\left(K_{m+1}-K_{m-1}\right)\left(I_{m-n}-J_{m+n}\right)+K_{m}\left(I_{m-n-1}-I_{m-n+1}-I_{m+n-1}+I_{m+n+1}\right)
\end{gather*}
$$

where I_{m}, K_{m} are modified Bessel functions of arguments $\xi=\lambda r$, and A_{n}, B_{m} are constants. Boundary conditions on the body (at $r=1$) $v_{r}=-\cos \theta, v_{\theta}=\sin \theta$ are satisfied when

$$
\begin{aligned}
& A_{0}+\frac{1}{2 \lambda} \sum_{m=0}^{\infty} B_{m}=0 ; \quad A_{n}+\frac{1}{4_{4}} \sum_{m=0}^{\infty} B_{m} \Phi_{m n}(\lambda)=\delta_{n 1} \\
& A_{n}+\frac{1}{4} \sum_{m=0}^{\infty} B_{m} \Psi_{m n}(\lambda)=-\delta_{n 1} \quad(n=1,2, \ldots)
\end{aligned}
$$

Eliminating A_{n} we can obtain the following system of equations for the determination of coefficients $\quad B_{m}$:

$$
\begin{gather*}
\sum_{m=0}^{\infty} B_{m} \Lambda_{m, n}(\lambda)=4 \delta_{n 1} \quad(n=1,2, \ldots) \tag{3.3}\\
\Lambda_{m, n}=I_{m-n} K_{m-1}+I_{m+n} K_{m+1}+K_{m}\left(I_{m-n+1}+I_{m+n-1}\right) \tag{3.4}
\end{gather*}
$$

Numerical investigation of the behavior of coefficients $\boldsymbol{R}_{\mathrm{m}}$ carried out in $/ 3 /$ at some Reynolds number had shown that these coefficients rapidly decrease in absolute value, as m is increased. Calculations have, also, shown that coefficient B_{0} decreases as the Reynolds number is lowered. The formulas presented in $/ 3 /$ were limited to a single coefficient B_{0}.

The method proposed by K.I. Babenko is used below for analyzing the solution of Eqs. (3.3). Setting $C_{m}=B_{m-1} \Lambda_{m-1, m}, \mu_{n m}=\Lambda_{m-1, n} / \Lambda_{m-1, m}$ we obtain for the determination of C_{1}, C_{2}, \ldots the system of equations

$$
\begin{equation*}
\sum_{m=1}^{\infty} \mu_{n m} C_{m}=4 \delta_{n 1} \quad(n=1,2, \ldots) \tag{3.5}
\end{equation*}
$$

with diagonal elemenls $\mu_{n n}$ equal unity. We denote the remainder of matrices $M=\left(\mu_{n m}\right)$ and the unit matrix $E=\left(\delta_{n m}\right)$ by N, and rewrite the system of Eqs. (3.5) in the form

$$
\begin{align*}
& (E+N) C=\rho \tag{3.6}\\
& C=\left(C_{1}, C_{2}, \ldots\right)^{\prime}, \quad f=(4,0,0, \ldots)^{\prime}
\end{align*}
$$

where the prime indicates transposition.
It is possible to show that the elements of matrix $N=\left(v_{n m}\right)$ satisfy for $(n, m) \neq(1,2)$ the inequality $v_{n m}<C I_{|n-m|}(\lambda)$, and $v_{12}=2 K_{0}(\lambda) I_{1}(\lambda)+O(\lambda)$. This and Eq. (3.6) imply that for fairly small λ

$$
\begin{align*}
& C=(E+N)^{-1} f=f-N f+N^{2} f-\ldots=f+O(\lambda S) \tag{3.7}\\
& S=1 / 2-\gamma-\ln (\lambda / 2)
\end{align*}
$$

where $\gamma \approx 0.57721$ is the Euler constant.
The following formula was obtained in /5/ for the drag of a cylinder:

$$
F_{1}=-\left.\sqrt{\frac{2 \pi}{\lambda}} \lim _{r \rightarrow \infty}\left(\sqrt{r} v_{r}\right)\right|_{\theta=0}
$$

The substitution of expression (3.1) for v_{r} yields

$$
F_{1}^{(0)}=-\left.\sqrt{\frac{2 \pi}{\lambda}} \lim _{r \rightarrow \infty}\left(\sqrt{r} v_{r}^{(0)}\right)\right|_{\theta=0}=\frac{\pi}{\lambda} \sum_{m=0}^{\infty} B_{m}=\frac{\pi}{\lambda} \sum_{m=1}^{\infty} \frac{C_{m}}{\Lambda_{m-1}, m}
$$

From this and formulas (3.4) and (3.7) follows that

$$
F_{1}^{(0)}=\frac{2 \pi}{\lambda\left[i_{0}(\lambda) K_{0}(\lambda)+I_{1}(\lambda) K_{1}(\lambda)\right]}+O(\lambda S)
$$

Hence formula (2.3) may be written as

$$
\begin{equation*}
F_{1}=\frac{2 \pi}{\lambda\left(I_{0} K_{0}-I_{1} K_{1}\right)}-\int_{D} w_{j}^{(0)} v_{k} \frac{\partial v_{j}}{\partial y_{k}} d y+O(\lambda, \zeta) \tag{3.8}
\end{equation*}
$$

4. To evaluate the integral

$$
J--\int_{D} u_{j}^{(\mathrm{G})} v_{k} \frac{\partial v_{j}}{\partial y_{k}} d y=\int_{D} v_{j} v_{k} \frac{\partial w_{j}^{(0)}}{\partial y_{k}} d y
$$

which appears in formula (3.8), we can use the estimates v_{j} and $\partial v_{j}^{(0) / \partial y_{k}, ~ a s ~} \lambda \rightarrow 0$ in $/ 1,6 /$ which imply that

$$
|J|<c \lambda^{-1} \ln ^{-3}(1 / \lambda)
$$

For the drag of a circular cylinder at low Reynolds number we, thus, obtain the folluwing expression:

$$
\begin{equation*}
F_{1}=\frac{2 \pi}{\Lambda\left[I_{0}(\lambda) K_{0}(\lambda)+\Pi_{1}(\lambda) K_{1}(\lambda)\right]}+O\left(\frac{1}{\lambda} \ln ^{-3} \frac{1}{\lambda}\right) \tag{4.1}
\end{equation*}
$$

This formula appeared in /7/ without an estimate of the residual term. Separating in (4.1) the principal term, we obtain Lamb's formula /8/with the estimate of the residue

$$
\begin{equation*}
F_{1}=\frac{2 \pi}{\lambda S}+O\left(\frac{1}{\lambda} \ln ^{-3} \frac{1}{\lambda}\right) \tag{4.2}
\end{equation*}
$$

Formulas (4.1) and (4.2) for the drag of a cylinder correspond to formulas obtained in /9/ by the method of merging asymptotic expansions.

The author thanks K.I. Babenko for valuable discussions.

REFERENCES

1. FINN R. and SMITH D.R., On the stationary solutions of the Navier - Stokes equations in two dimensions. Arch. Ration. Mech. and Analysis, Vol.25, No.1, 1967.
2. SMITH D.R., Estimates at infinity for stationary solutions of the Navier-Stokes equations in two dimensions. Arch. Ration. Mech. and Analysis, Vol.20, No.5, 1965.
3. TOMOTIKA S. and AOI T., The steady flow of viscous fluid past a sphere and a circular cylinder at small Reynolds number. Quart. J. Mech. and Appl. Math. Vol.3, pt.2, 1950,
4. TOMOTIKA S. and AOI T., An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number. Quart. J. Mech. and Appl. Math., Vol. 4, pt.4, 1951.
5. BABENKO K.I., The asymptotic behavior of a vortex far away from the body in a plane flow of viscous fluid. PMM, Vol.34, No.5, 1970.
6. FINN R. and SMITH D.R., On the linearized hydrodynamical equations in two dimensions. Arch. Ration. Mech. and Analysis, Vol.25, No.l, 1967.
7. BAIRSTOW L., CAVE B.M., and LANG E.D., The resistance of cylinder moving in a viscous fluid. Philos. Trans. Roy. Soc., Ser. A, Vol.223, 1923.
8. LAMB G., Hydrodynamics /Russian translation/, Moscow-Leningrad, Gostekhizdat, 1947.
9. KAPLAN S., Low Reynolds number flow past a circular cylinder. Acts. IX Congr. Internat. de Mècanique Appliquée, Vol.III, Bruxelles, Univ. de Bruxelles, 1957.
